Mars Image Analysis Grades: 5-12 Prep Time: ~10 Minutes Lesson Time: 3 Hours # WHAT STUDENTS DO: Establish geologic sequences in a Mars image. Students step into the shoes of real planetary scientists. Using large-format images of Mars, provided by Mars Education at Arizona State University, students reach conclusions about the geology of Mars. Students are tasked with identifying features on the surface of Mars, determining the surface history of the area, calculating the size of features, and developing research questions. #### **NGSS CORE & COMPONENT QUESTIONS** #### **INSTRUCTIONAL OBJECTIVES** # WHAT IS THE UNIVERSE, AND WHAT IS EARTH'S PLACE IN IT? NGSS Core Question: ESS1: Earth's Place in the Universe How do people reconstruct and date events in Earth's planetary history? NGSS ESS1.C: The History of the Planet Earth How do Earth's major systems interact? NRC ESS2.A: Earth Materials and Systems Students will be able IO1: to reconstruct geologic events using empirical evidence to use an argument to establish a research topic through collaborative debate and decision making # 1.0 Rationale Students and teachers alike are often confused or mislead by the textbook version of the scientific method. The process of science is often portrayed as a linear process with a defined beginning and endpoint. For many very young students (K-4), the linear process is a good place to start as they are learning the scientific method; however, for older students, the focus on the iterative process of science begins to develop. The intent of these lessons is to address the misconceptions of the scientific method and teach a much more accurate representation of the process as a whole. Each segment will provide a rationale section, similar to this one, explaining the intent of the lesson along with possible iterations. # 2.0 Material # **Required Materials** # Please supply: | • | Wet erase marker | - 1 per group | |---|------------------|-----------------| | • | Ruler | - 1 per group | | • | Calculator | - 1 per student | · Optional: Computer and Projection System # **Materials Supplied from Mars Education:** | • | Feature ID Charts | - 1 per group | |---|-------------------|---------------| | • | THEMIS image | - 1 per group | | • | MOLA map | - 1 per group | Optional: Mars Image Analysis PowerPoint Presentation # **Please Print:** | From Student Guide: | |---------------------| |---------------------| | (A) What Can You Tall from a Diature? | 1 nor group | |-----------------------------------------------|-----------------| | (A) What Can You Tell from a Picture? | - 1 per group | | (B) Background | - 1 per student | | (C) Lesson Background | - 1 per student | | (D) Student Data Log | - 1 per student | | (K) Making Measurements Notes | - 1 per student | | (L) Student Measurement Data Log | - 1 per student | | (M) Establishing a Research Topic of Interest | - 1 per student | | (N) Background Research | - 1 per student | | (P) Example Observation Table | - 1 per student | | (Q) Observation Table | - 1 per student | | (R) Choosing a Topic for Research | - 1 per student | | | | #### From Supplemental Materials: | The supplies of o | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | (E) Sunlight and Shadows | - 1 per group | | (F) Determining the Relative Ages of Features | - 1 per group | | (G) Crater Classification – Guide | - 1 per group | | (H) Relative Age Dating Principles – Guide | - 1 per group | | (O) Using THEMIS Website to Make Scientific Observations | - 1 per student | | (S) Feature ID Charts | - 1 per group | # **Optional Materials** #### **Supplemental Materials:** (I) Classifying Craters (J) Relative Age Dating Principles (V) Classifying Craters - Sample Answers (W) Relative Age Dating Principles – Sample Answers 1 per student1 per student #### **Teacher Guide:** (T) Teacher Resource #1 (U) Teacher Resource #2 (X) Mars Image Analysis Rubrics (Y) Alignment of Instructional Objective, Standards, & Learning Outcomes #### 3.0 Vocabulary Analyze consider data and results to look for patterns and to compare possible solutions **Classification** the assignment of objects to categories based on characteristics **Deposition** accumulation of material (such as sediment) **Erosion** the process where the surface of a planet is worn away by water, glaciers, winds, waves, etc. **Evaluate** check the scientific validity or soundness **Everyday Observation** the act of noting facts or occurrences that are common characteristics. **Explanations** logical descriptions applying scientific information **Geologic History** the history of geologic events (such as erosion, deposition, glaciers, volcanism, etc.) of an area Inference drawing a logical conclusion based on observations and data collection Scientific Observation the act of noting facts or occurrences that are unique or interesting and can lead to a scientific research question. Qualitative Observation the act of noting facts or occurrences that are based on physical characteristics or attributes, such as color or texture. Quantitative Observation the act of noting facts or occurrences that are based on numerical data, such a counting the number of a feature or making measurements of a feature. Weathering mechanical and chemical processes that cause exposed rock to decompose #### 4.0 Procedure # PREPARATION (~15 minutes) - A. Print materials - B. Organize 1 THEMIS image, 1 MOLA map, 1 set of (S) *Feature ID Charts*, and 1 wet erase marker for each group (face down on table). # STEP 1: ENGAGE (~10 minutes) # What can you tell from a picture? - A. Hand out THEMIS image, (A) What can you tell from a picture? sheet - B. Ask students to look at the top image on page 1 of (A) What can you tell from a picture? and ask where the arrow is pointing on the map. Ask the students to make observations and share their observations about this area on the image. - C. Next, ask the students to look at the second and third images on (*A*) What can you tell from a picture? (which are zoomed-in versions of this image) in both colorized elevation and black and white infrared imaging. Again, make observations and share them about this area on their image. Do they understand anything different about this area than they did before? Share out with the classroom. - D. Finally, ask the students to look at the final image on (*A*) What can you tell from a picture? a black and white THEMIS image. This image is further zoomed in for even more detail. One last time, ask them to make observations and share their observations about this area. Do they understand anything different about this area than they did before? Share out with the classroom. - E. At this point, the students should have made many observations. Ask students what information is missing? If we were to attempt to explain why this crater looks so different from other craters, what else would we need to know, observe, or understand to do that? (Students should say they need more observations, find more distinguishing characteristics, possibly a closer image or other types of data.) - F. Point out that images provide the simplest means of exploring another world. We use images of Mars to make observations and identify what other information we need. We zoom in and zoom out to get better detail or more information about our image. We will look at some of these THEMIS images of Mars. Before we do, let's learn a little about THEMIS. Hand out (B) Background sheet. # STEP 2: EXPLORE (~60 minutes) · Print B-L and S in Materials list # **Image Analysis** #### **Identify Surface Features** # (See Teacher Resource #1 and #2 for an orientation of these materials) - A. Before distributing materials, have students brainstorm analogous features they know exist on Earth that may also exist on Mars. This will help students build knowledge and make connections to previous knowledge throughout the activity. - B. Have students read (*C*) Lesson Background to orient them to the purpose and intent of the lesson. - C. Familiarize and distribute Feature ID Charts, (E) Sunlight and Shadows Sheet, and THEMIS images to students. - D. Have students use erasable markers to identify features on laminated THEMIS images using (S) Feature ID Charts. Have students initially work with one image. - E. After ~10-15 minutes, have students exchange images they have analyzed so other students can make observations from each of the images. - i. End this part of the activity with a discussion of features observed in images from either the PowerPoint slides or paper. - ii. Ask students to record the identified features into the *(D) Data Log Sheet* and the geologic processes involved in their creation. # **Teacher Tip** The observations students will make here are most likely considered "everyday observations." This means they will be simplified to examples such as "There are 30 craters in the image." While this is a true observation, it most likely will not lead to an experimental question. Providing extra time, even when the students appear to be done and off task will allow them to make better observations; however, students may need more content knowledge about the topic they choose before they can make scientific observations. This will be addressed later in the lesson. #### **Determine the Relative Ages of Features** (See Teacher Resource #2 for an orientation of these materials) - A. Before distributing materials, discuss with students how they may know when one feature is older or younger than another. This will again help students build knowledge and make connections to previous knowledge throughout the activity. - B. Familiarize and distribute (H) Relative Age Dating Principles Guide and (G) Crater Classification Guide handout to students. - C. Have students use erasable markers to identify relative ages of features on the original image they were working with. Have students at least label the "oldest" and "youngest" feature. Students can then identify relative ages of other features with respect to the oldest/youngest feature. - D. After ~8-10 minutes, have students discuss the relative ages of features on their image with other groups. Students should discuss the geologic history (what has happened in their area of Mars) as part of their discussion. - E. Ask students to go back to their (D) Student Data Log and include the order of which the features have occurred in the Relative Age column and the evidence they used to determine this rank in the Evidence column. # **Teacher Tip** Supplemental Materials (I) Classifying Craters and (J) Relative Age Dating Principles have been provided as additional practice sheets to strengthen their understanding of these principles that are often incorporated in National and State standards. Answer Keys can be found in (V) and (W). #### **Calculate the Size of Features** - A. Using (K) Student Measurement Notes **sheet**, have students measure and simply label features using metric units. - B. Review the example of calculating the size of features in THEMIS images with students. - C. Have students determine the *scale factor* of their image. - D. Once students have determined the *scale factor* of their image, make sure they write this somewhere on their image. - E. Have students use the measurements (in centimeters) of the features labeled on their image and make the appropriate calculation (feature measurement X scale factor) to determine the size of each measured feature in kilometers on Mars. - F. Have students write these measurements for each feature into their (L) Student Measurement Data Log in the Measurement column. # **Teacher Tip** This would be a good time to discuss scale. Have students estimate the size of the classroom in meters, measure the room, then figure out how many of their classroom would fit into one of their features. For example, in a 3-kilometer wide crater, your classroom may fit inside it 200 times! # STEP 3: EXPLAIN (~20 minutes) # **Discussion and Sharing** #### **Identify Surface Features:** A. End this part of the activity with a discussion of features observed in images # **Determine the Relative Ages of Features:** A. After ~8-10 minutes, have students discuss the relative ages of features on their image with other groups. Students should discuss the geologic history (what has happened in their area of Mars) as part of their discussion. #### Calculate the Size of Features: - A. Have students use the measurements (in centimeters) of the features labeled on their image and make the appropriate calculation (feature measurement X scale factor) to determine the size of each measured feature in kilometers on Mars. - B. Have students write this measurement for each feature into their (L) Student Measurement Data Log in the Measurement column. # **STEP 4: ELABORATE** (~15 minutes) Print (M-R) # **Compare Mars to Earth** - A. Have students take their list of geologic features they have identified on Mars and make a list of similar Earth geologic features and their locations. - B. Compare and contrast the geologic features on both planets. - C. Present a hypothesis as to why the geologic features might differ. # **Establishing a Research Topic** #### Materials Needed: - (N) Background Research - (O) Using THEMIS Website to Make Scientific Observations - (P) Example Observation Table - (Q) Observation Table (2 sheets) - Index cards (3"x5") - Markers - A. Have each student find a partner and work together to fill in list #1 on the (M) Establishing a Research Topic of Interest sheet. They should spend about 3-5 minutes doing this and can come up with topics from any aspect of Mars exploration or geology that interests them. - B. As a class, the students will need to debate and establish their research topic of interest. Should the class be evenly split on a research topic, they could possibly combine their two top topics by establishing a relationship between the two topics to explore. - C. After the students have established a topic, they will need to do some research about it. The goal is to learn how the feature forms, where they are typically found, if there are similar features on Earth or other planetary bodies and how they are the same or different to feature on Earth or other planetary bodies. Students should become experts on their topic. Photocopy as many (N) Background Research sheets as they will need. - D. Students may need help getting started with their research. Here are a couple of sources they can use to learn more about their topic of interest: - http://themis.asu.edu/topic - http://redplanet.asu.edu/ #### **Making Scientific Observations** - A. Using background knowledge on their topic, students will make scientific observations about their selected topic as opposed to everyday observations. - B. Point out that the primary difference between these types of observations is the understanding of the topic. A scientist who understands how craters are formed will notice a crater(s) with a different pattern, shape or possibly different features that are interesting or unique to the crater. Simply observing that a crater exists is an everyday observation. - C. Their research will help the students make scientific observations. For example, their observations will improve from "There are 30 craters in the image." to "There are 5 Modified craters, 25 destroyed craters, 10 craters are less than 2km wide, 20 are greater than 2 km wide, all of the modified lack a central peak, etc." D. Students will use (O) Using THEMIS Website to Make Scientific Observations, (P) Example Observation Table, and (Q) Observation Table. # **Choosing a Final Research Topic** - A. Students will complete (R) Choosing a Topic for Research and share their most interesting scientific observations from (Q) Observation Table. These observations will guide the potential discussion and will allow them to group topics or concepts. - B. It may be helpful to use index cards for topics and scientific observations. They may even find they can incorporate a couple of topics of interest for primary and secondary science. Allow the students to debate and come to a consensus on the final topic for research. This is an opportunity to experience authentic science and debate. Scientists typically do not work individually. They discuss ideas and interesting topics for research with other scientists in the field. "Critical thinking is required, whether in developing and refining an idea (an explanation or a design) or in conducting an investigation. The dominant activities in this sphere are argumentation and critique, which often lead to further experiments and observations or to changes in proposed models, explanation, or designs. Scientists and engineers use evidence-based argumentation to make the case for their ideas, whether involving new theories or designs, novel ways of collecting data, or interpretations of evidence. They and their peers then attempt to identify weaknesses and limitations in the argument, with the ultimate goal of refining and improving the explanation or design." (National Research Council Science Framework, pg. 46.) # STEP 5: EVALUATE (~20 minutes) Print Rubrics #### Evaluate proposed solutions using criteria. #### **Identify Surface Features** A. Ask students to record the identified features into the *(D) Data Log Sheet* and the geologic processes involved in their creation. # **Determine the Relative Ages of Features** A. Ask student to go back to their (D) Student Data Log and include the order of which the features have occurred in the Relative Age column and the evidence they used to determine this rank in the Evidence column. # Making Scientific Observations and Establishing a Research Topic A. For students to make scientific observations instead of everyday observations, they will need to understand a topic very well. To do that, they will need to establish a topic that interests them about Mars and do in-depth research on that topic. Scientific observations lead to testable research questions. A rubric has been provided to evaluate the student's ability to write scientific observations and to actively debate the qualities of a good research topic. #### 5.0 Extensions #### **CALCULATING HEIGHTS AND DEPTHS OF FEATURES:** Students can calculate depths and heights of features by dividing the length of a shadow by the tangent of the incidence angle (incidence angle information is provided). To do this, students would use the following steps: - Measure the width of the shadow in centimeters. - Using the calculated scale factor (Part 3 of the *Mars Image Analysis* activity), convert the shadow measurement to kilometers. - Divide that calculated measurement by the tangent of the incidence angle to compute the depth of the feature being observed. #### PARTICIPATING IN THE MARS STUDENT IMAGING PROJECT: This activity can be used as an introduction to participation in the Mars Student Imaging Project (MSIP). The Mars Student Imaging Project allows students to conduct authentic research about Mars with the opportunity to target a new image from the THEMIS visible camera onboard the Mars Odyssey spacecraft. For more information on the Mars Student Imaging Project, go to http://marsed.asu.edu/msip-home. #### **ANALYZING OTHER THEMIS IMAGES:** Students can analyze other THEMIS visible images available on the THEMIS website: http://themis.asu.edu. #### **GETTING INVOLVED IN OTHER MARS-RELATED OPPORTUNITIES:** Students can get involved in activities available on NASA's Be A Martian website: http://beamartian.jpl.nasa.gov/welcome. #### **6.0 Evaluation/Assessment** Use the *(W) Mars Image Analysis Rubric* as a formative and summative assessment, allowing students to improve their work and learn from mistakes during class. The rubric aligns with the NRC Framework, National Science Education Standards, and the instructional objective(s) and learning outcomes in this lesson. #### MARS IMAGE ANALYSIS # (T) Teacher Resource #1 (1 of 2) THEMIS visible images are ~18 km wide. *<u>Title:</u>* Names the general region where the image is located on Mars. Image ID: Includes the orbit # in which the image was taken (first 5 digits) followed by a 3 digit number that indicates the count of the visible images that were taken during that orbit. <u>Center Latitude and Center</u> <u>Longitude</u>: Exact location of this image on a map of Mars. Incidence Angle: Angle of the Sun when the image was taken. This would be used if the students wanted to measure depth or heights of features using the sun or incidence angle. **Orbit:** Orbit in which the image was acquired. <u>Mars Solar Time:</u> Time (on Mars) when the image was taken. **THEMIS Image:** The long, rectangular image consisting of 18-19 framelets. Framelets are angled due to the rotation of the planet beneath the camera as it takes photos. <u>Context Image:</u> Shows the surrounding area where the THEMIS image was taken. The THEMIS image "stamp" is the rectangular box in the center of the context image. **NOTE:** With THEMIS visible images, the sunlight is coming from the left. A feature with a shadow on the left is carved into the surface. (Example: an impact crater will have the shadow on the left.) MARS IMAGE ANALYSIS Teacher Guide # (T) Teacher Resource #1 (2 of 2) #### **Additional Details:** - Image ID #: Allows you to view this image on the THEMIS viewer website (http://viewer.mars.asu.edu/#start) - Mars Solar Time: Time is based on a 24-hour clock and uses percentages of hours rather than minutes. For example, if an image was taken at 15.75, it would be 3pm and 75% of an hour, or 3:45pm. If an image was taken at 16.2, the time would be 4pm and 20% of an hour or 4:12pm. - **Context Image:** Shows a Mars Orbiter Laser Altimeter (MOLA) shaded relief map. This is not a photograph but is considered an "artificial image" that uses data acquired by the MOLA instrument to provide a black and white context showing elevation differences. #### SUNLIGHT AND SHADOWS The Sunlight and Shadows sheet will help students to identify features in their THEMIS image by orienting them to how shadowing is used to identify a raised or carved feature. Some students may need additional practice with this concept using concrete materials such as a cup and flashlight. Have students discover how the lighting works with the cup turned right-side up and upside down. MARS IMAGE ANALYSIS Teacher Guide # (U) Teacher Resource #2 #### FEATURE IDENTIFICATION CHARTS The Feature ID Charts will help students learn the names of different geologic features on Mars. They also provide information on how features form. The information at the top of each chart indicates what geologic process the listed features are associated with. There are 5 total charts that focus on features associated with *canyons*, *craters*, *wind*, *water*, and *volcanoes*. There are many other features students may observe in images that are not included on these charts. Encourage students to share other features they may know. #### RELATIVE AGE DATING TECHNIQUE HANDOUTS One additional tool students will use for this activity are the **Relative Age Dating Technique** handouts. These two pages will help students identify what features are older or younger, which will help them better understand the geologic history of the surface.